

College and Career Readiness Mathematics

Scoring Rubric (Draft)

These tests were developed with support from the Bill and Melinda Gates Foundation

Short Tasks			
Q	Answer	Points	
1	x = 1 or -4	1	
2	(x=7)	1	
	length 12 cm		
	width 5 cm		
3	17 or –17	1	
4	2x - y = 0	1	
5	8 4	1	
	$\frac{1}{14} = \frac{1}{7}$		
6	$1.2.7 \times 104 + 1.2 \times 102$	1	
	$= 2.712 \times 104$		
7	a – b	1	
8	x = 32 and $y = 8$	1	
9	3	1	
	$-\frac{1}{4}$		
10	Yellow: 43cm	1	
	Red: 55cm		
	Answer: Red		
	Total	10	

	Multiplying Cells						Rub	ric		
	:								Points	Section points
1.	Fills in th	e table c	orrectly:	-	-					
	Time	0	20	40	60	80	100	120	2	
	Number of cells	1	2	4	8	16	32	64		2
2.	Fills in th	e table c	orrectly:							
	Time	0	20	40	60	80	100	120		
	Number of cells as power of 2	2 ⁰	21	2 ²	2 ³	24	25	2 ⁶	2	2
3.	Gives a c	orrect an	swer: 2 ⁹ (allow 51	2)				1	
	Gives a c 3 hours is 20 minute	orrect ex s 9 lots of es which	planation f 20 minu have pass	such as: tes and th sed.	ne power o	of 2 equa	ls the nur	nber of	1	2
4.	Gives a d	correct a	nswer: 3	2768					1	
	Shows co	orrect w	ork such	as:						
	5 hours = 2 ¹⁵	= 5x3 lot	s of 20-m	inutes = 1	15 lots of	20-minu	tes		1	
							• •			2
5.	Gives a o	correct a	nswer: 3	40 m1nu	ites or 5 l	hours 40	minute	S	1	
	5nows c	orrect w	ork such	as:						
	$2^{17} = 327$	$68 \times 2 =$	121072						1	
	2 = 000	$30 \times 2 =$	131072							
	17 X 20									2
							Tot	al Points		10

	Sorting Fund	Rubr	ic			
					Points	Section points
1.	Gives correct answe	ers:				
	ıæ)					
	Graph	Equation	Table	Rule		
	А	С	В	А		
	В	D	А	С		
	С	В	С	D		
	D	А	D	В	6	
	Allow 1 point for ea	ach two correct and	swers.			6
2.	Gives correct expla	nations such as:				
(a)	Equation C is a qu	adratic curve tha	t passes through	the origin and is	1	
	symmetrical about	t the y axis, so this	s is Graph A.	-		1
(b)	Equation D is the	equation of a strai	ight line, so this i	s Graph B.	1	
(-)	-1	1	-8			1
(c)	Equation B is a ou	adratic curve tha	t passes through	the origin and is		
(0)	symmetrical about	t the x axis, so this	s is Graph C.		1	
					1	1
(d)	Equation A is an	inverse (hyperbo	olic) function: th	ne graph	1	1
	this is Graph D.		1			
	<u> </u>					1
				Total Point	ts	10

	Charity Fair	Rubric	
		Points	Section points
1.	Gives correct answer: <u>1</u> 16	1	
	Shows work such as: probability (all red) = $(1/4)^3 = 1/64$	1	
	probability (all the same color) = $4 \ge (1/64) = 1/16$		2
2.	Gives correct answer: No and May show that: If 16 people play once, they pay 16 x 25¢ = \$4		
	On average, 1 person wins 5 So the charity loses. ($4 - 5 = - 1$) Accept alternative correct reasoning	2 ft	
3.	Suggests changes such as: Change 1 Have more colors, say 5. Calculates prob(all the same color) = $5 \times (1/5)^3 = 1/25$ States that if 25 people play once, the charity gains. (\$6.25 - \$5 = \$1.25)	1 1 1	3
	Change 2 Have more barrels, say 4. prob(all the same color) = $4 \times (1/4)^4 = 1/64$ If 64 people play, the charity gains. (\$16 - \$5 = \$11)	or 1 1 1	or 3
	Change 3 Increase the price to 50 cents If 16 people play once, the charity gains. $(\$8 - \$5 = \$3)$ Alternatively decrease the amount was from say $\$5$ to $\$3$	or 1 1	or
	If 16 people play once, the charity gains. $(\$4 - \$3 = \$1)$	1	3
	Total Points	max	10

	Patchwork					oric
					Points	Section points
1.	Correctly c	completes the table: 1 po	int triangles, 2 points so	quares		
	Size (n)	Number of triangles (t)	Number of squares (s)			
	1	4	0		1	
	2	8	4		2	
	3	12	12			
	4	16	24			
	5	20	40			
						3
2.	Verbal rule or An alge Explanatio triangles as or From riangles in	e: The number of triangle braic rule: $t = 4n$ n: Each cushion has four the size. the table, as the size of the table of the size of the	es is four times the size r edges: each edge has tl he cushion increases by	of the cushion. he same number of 1' the number of t	1 or 2 1 or 1	
3.	A stepwise The number multiples of or The num the number or An algo Explanatio Stepwise ru Algebraic ru together, w	e verbal rule: er of squares increases by of 4. mber of squares + the n er of squares for the next ebraic rule: $s = 2n(n - 1)$ ns relating to the cushio ule: Each triangle of one rule: Each cushion has for e get two rectangles, siz	y 4, then 8, then 12, the umber of triangles for an size. e.g.: $16 + 24 = 40$ or equivalent algebraic n design, such as the fol e size becomes a square if our sections: if we put tw the <i>n</i> by $(n - 1)$.	n 16: increasing ny size is equal to rule. lowing. in the next size. or vo sections	1 or 1 or 2 1	3
4.	Stepwise ro or Algebraic r	ule: continues sequence rule: finds that when <i>s</i> =	to find that when $s = 180$ = 180, $n = 10$: when $n = 10$	0, $t = 40$ 10, $t = 40$.	1 or 1	1
				Total Points		10

Sq	Square		
		Points	Section points
1	Gives correct answer: 5	3	
	Uses the Pythagorean correctly, but incorrect answer.	(2)	
	Attempts to use the Pythagorean Rule	(1)	3
2	Gives correct answer: -3/4	2	2
3.	Gives correct explanation such as:		
	The slope of $DA = 4/3 =$ slope of CB		
	The slope of $AB = -3/4$		
	Therefore the sides of the shape are perpendicular		
	The lengths of AB and AD are 5	5	
	Therefore the shape is a square.		
	Partial credits	(4)	
	For some correct work.	to (1)	5
	Total Points		10

Gives correct answer: The ratio of the areas of the two squares is 1:21Shows correct work such as: Draws construction lines from the center of the circle to the vertices of the small square.1If the large square has side of length x, then, using the Pythagorean Theorem gives the length of the sides of the small square are $\sqrt{2x/2}$.4The area of the large square is x^2 . The area of the small square is $x^2/2$ Accept alternative methods.1Gives correct answer: The ratio of the two areas is 1:21If a second circle is inscribed in the smaller square, using the Pythagorean Theorem gives the radius of the small square is $\sqrt{2x/4}$ The area of the large circle is $\pi(\sqrt{2x/4})^2 = \pi 2x^2/16 = \pi x^2/8$ 4	Circles and Squares	Ru	bric
Gives correct answer: The ratio of the areas of the two squares is 1:21Shows correct work such as: Draws construction lines from the center of the circle to the vertices of the small square.1If the large square has side of length x, then, using the Pythagorean Theorem gives the length of the sides of the small square are $\sqrt{2x/2}$.4The area of the large square is x^2 . The area of the small square is $x^2/2$ Accept alternative methods.1Gives correct answer: The ratio of the two areas is 1:21If a second circle is inscribed in the smaller square, using the Pythagorean Theorem gives the radius of the small square is $\sqrt{2x/4}$ 4The area of the large circle is $\pi(x/2)^2 = \pi x^2/4$ The area of the small circle is $\pi(\sqrt{2x/4})^2 = \pi 2x^2/16 = \pi x^2/8$ 4		Points	Section points
Shows correct work such as: Draws construction lines from the center of the circle to the vertices of the small square.4If the large square has side of length x, then, using the Pythagorean Theorem gives the length of the sides of the small square are $\sqrt{2x/2}$.4The area of the large square is x^2 . The area of the small square is $x^2/2$ Accept alternative methods.1Gives correct answer: The ratio of the two areas is 1:2 If a second circle is inscribed in the smaller square, using the Pythagorean Theorem gives the radius of the small square is $\sqrt{2x/4}$ 1The area of the large circle is $\pi(x/2)^2 = \pi x^2/4$ The area of the small circle is $\pi(\sqrt{2x/4})^2 = \pi 2x^2/16 = \pi x^2/8$ 4	Gives correct answer: The ratio of the areas of the two squares is 1:2	1	
If the large square has side of length x, then, using the Pythagorean Theorem gives the length of the sides of the small square are $\sqrt{2x/2}$.4The area of the large square is x^2 . The area of the small square is $x^2/2$ Accept alternative methods.1Gives correct answer: The ratio of the two areas is 1:2 If a second circle is inscribed in the smaller square, using the Pythagorean Theorem gives the radius of the small square is $\sqrt{2x/4}$ The area of the large circle is $\pi(x/2)^2 = \pi x^2/4$ The area of the small circle is $\pi(\sqrt{2x/4})^2 = \pi 2x^2/16 = \pi x^2/8$ 4	Shows correct work such as: Draws construction lines from the center of the circle to the vertices of the small square.		
The area of the large square is x^2 .The area of the small square is $x^2/2$ Accept alternative methods.Gives correct answer: The ratio of the two areas is 1:2If a second circle is inscribed in the smaller square, using the Pythagorean Theorem gives the radius of the small square is $\sqrt{2x/4}$ The area of the large circle is $\pi(x/2)^2 = \pi x^2/4$ The area of the small circle is $\pi(\sqrt{2x/4})^2 = \pi 2x^2/16 = \pi x^2/8$ A second circle is methods.	If the large square has side of length x, then, using the Pythagorean Theorem gives the length of the sides of the small square are $\sqrt{2x/2}$.	4	
The area of the small square is $x^2/2$ Accept alternative methods.Gives correct answer: The ratio of the two areas is 1:21If a second circle is inscribed in the smaller square, using the Pythagorean Theorem gives the radius of the small square is $\sqrt{2x/4}$ 4The area of the large circle is $\pi(x/2)^2 = \pi x^2/4$ The area of the small circle is $\pi(\sqrt{2x/4})^2 = \pi 2x^2/16 = \pi x^2/8$ 4	The area of the large square is x^2 .		
Accept alternative methods.1Gives correct answer: The ratio of the two areas is 1:21If a second circle is inscribed in the smaller square, using the Pythagorean Theorem gives the radius of the small square is $\sqrt{2x/4}$ 4The area of the large circle is $\pi(x/2)^2 = \pi x^2/4$ The area of the small circle is $\pi(\sqrt{2x/4})^2 = \pi 2x^2/16 = \pi x^2/8$ 4	The area of the small square is $x^2/2$		
Gives correct answer: The ratio of the two areas is 1:2 If a second circle is inscribed in the smaller square, using the Pythagorean Theorem gives the radius of the small square is $\sqrt{2x/4}$ The area of the large circle is $\pi(x/2)^2 = \pi x^2/4$ The area of the small circle is $\pi(\sqrt{2x/4})^2 = \pi 2x^2/16 = \pi x^2/8$ A scent alternative methods	Accept alternative methods.		
If a second circle is inscribed in the smaller square, using the Pythagorean Theorem gives the radius of the small square is $\sqrt{2x/4}$ The area of the large circle is $\pi(x/2)^2 = \pi x^2/4$ The area of the small circle is $\pi(\sqrt{2x/4})^2 = \pi 2x^2/16 = \pi x^2/8$	Gives correct answer: The ratio of the two areas is 1:2	1	
The area of the large circle is $\pi(x/2)^2 = \pi x^2/4$ The area of the small circle is $\pi(\sqrt{2x/4})^2 = \pi 2x^2/16 = \pi x^2/8$	If a second circle is inscribed in the smaller square, using the Pythagorean Theorem gives the radius of the small square is $\sqrt{2x/4}$		
The area of the small circle is $\pi(\sqrt{2x/4})^2 = \pi 2x^2/16 = \pi x^2/8$	The area of the large circle is $\pi(x/2)^2 = \pi x^2/4$	4	
	The area of the small circle is $\pi(\sqrt{2x/4})^2 = \pi 2x^2/16 = \pi x^2/8$		
Accept alternative methods.	Accept alternative methods.		10
IU Total Points 10	Total Points		10

	Fun Size Can	Rub	oric
		Points	Sectio n poin ts
1.	Gives correct answers: 15.9 - 16.0 cm and 2.5 - 2.6 cm .	2 x 1	
	Shows correct work such as: Substitutes in the formula $\mathbf{V} = \pi \mathbf{r}^2 \mathbf{h}$ to find the height of the can with radius 2cm and Substitutes in the formula $\mathbf{V} = \pi \mathbf{r}^2 \mathbf{h}$ to find the height of the can with radius	1	
	5cm.	1	
	States that the can with radius 2 cm is easy to hold or unstable or tall and thin: the can with radius 5 cm is difficult to hold or drink from or short and fat or equivalent.	1	
2	G_{1}	1	4
۷.	Uses the formula $S = 2\pi r^2 + 2\pi r h$ to find the surface areas of cylinders with	1	
	radii 2cm and 5cm.	1	
			2
	Decides to find the surface area of other cylinders. Correctly finds the height and surface area of a cylinders with radii between 2 cm and 5 cm		
	$r = 3$, $h = 7.1/7$, $A \approx 190.4$ cm ² If graph drawn allow r = 4, $h = 4.0$, $A \approx 201.1$ cm ² point for values plotted.	1	
	States that from these results it appears that the minimum surface area is when the radius is about 3 cm .	1	
	Finds surface areas of cylinders with radii around $r = 3$. e.g. r= 2.5, $h = 10.2$, $A = 199.5$ cm ² Allow a point for each correct area	1	
	$r=3.5, h=5.2, A=191.3 cm^2$		
	States that from calculations, or a graph of r/A (or h/A), the minimum surface area has radius 3 cm, height 7 cm.	1	
			4
	Total Points		10

Mu	Ru	bric	
		Points	Section points
1.	Gives correct answers:		
	a: ±11	7 x 1	
	b: 0, 1	,	
	c: any values between 0 and 1		
	d: 0, 1		
	e: any value \geq -0.3947		
	f: any value less than 1 except 0		
	g: any positive value		7
			/
2.	Gives correct answers with reasons such as:		
a.	$x^2 = 121$ and $x^2 = x$ These are quadratic equations with two roots	1	
b.	$(x-1)(5x^4 - 7x^3 + x) = 0$	1	
	S solutions	1	
C.	Gives two of: $x^2 < x = 1776x + 1066 > 365 + x^2 > x^3 x > x$	1	
	$x < x, 1//0x + 1000 \ge 305, x \ge x, x \ge x$		3
	Total Points		10

t Buy Tickets			Ru
			Points
Shows correct reason May solve using alge	ing and calculations	such as the following:	
Sure Print: The cost f	for n tickets in dollar	s is $C = 2n/25$	2
Best print: $C = 10 + r$	n/25		2
Method 1: May draw	graphs and find the	point of intersection, $(n = 250)$. 4
Method 2 (algebraic)			or
When the two costs a	re equal $2n/25 = 10$	0 + n/25	
	n = 25	0	4
Shows that when $n < $	250 Sure Print is ch	eaper	2
When $n > 250$ Rest P	rint is cheaner		
When n > 250 Best P Or May decide to sol	rint is cheaper ve arithmetically		or
When n > 250 Best P <i>Or May decide to sol</i> Decides to list costs f	rint is cheaper ve arithmetically for different numbers	s of tickets.	or 2
When n > 250 Best P <i>Or May decide to sol</i> Decides to list costs f <u>Number of tickets</u>	rint is cheaper ve arithmetically for different numbers Sure Print	s of tickets. Best Print	or 2
When n > 250 Best P Or May decide to sol Decides to list costs f <u>Number of tickets</u> 50	rint is cheaper ve arithmetically For different numbers Sure Print 4	s of tickets. Best Print 12	or 2
When n > 250 Best P Or May decide to sol Decides to list costs f Number of tickets 50 100	rint is cheaper <i>ve arithmetically</i> For different numbers Sure Print 4 8	s of tickets. Best Print 12 14	or 2 5
When n > 250 Best P Or May decide to sol Decides to list costs f Number of tickets 50 100 150	rint is cheaper <i>ve arithmetically</i> For different numbers Sure Print 4 8 12	s of tickets. Best Print 12 14 16	or 2 5
When n > 250 Best P Or May decide to sol Decides to list costs f Number of tickets 50 100 150 200	rint is cheaper <i>ve arithmetically</i> for different numbers Sure Print 4 8 12 16	s of tickets. Best Print 12 14 16 18	or 2 5
When n > 250 Best P <i>Or May decide to sol</i> Decides to list costs f <u>Number of tickets</u> 50 100 150 200 250	rint is cheaper <i>ve arithmetically</i> for different numbers Sure Print 4 8 12 16 20	s of tickets. Best Print 12 14 16 18 20	or 2 5
When n > 250 Best P Or May decide to sol Decides to list costs f Number of tickets 50 100 150 200 250 300	rint is cheaper <i>ve arithmetically</i> For different numbers Sure Print 4 8 12 16 20 24	s of tickets. Best Print 12 14 16 18 20 23	or 2 5
When n > 250 Best P <i>Or May decide to sol</i> Decides to list costs f <u>Number of tickets</u> 50 100 150 200 250 300 States that the lists sh States that when n < 1 When n > 250 Best P	rint is cheaper <i>ve arithmetically</i> For different numbers Sure Print 4 8 12 16 20 24 low that when $n = 25$ 250 Sure Print is cheaper	s of tickets. Best Print 12 14 16 18 20 23 50 the costs are equal eaper	or 2 5

Propane Tanks	Ru	bric
	Points	Section points
Gives correct answers and shows correct reasoning such as:		
The approximate value for the radius of the new tank is 4 feet.	1	
For the existing tank		
The volume of the cylinder is 283 or 90π	2	
The volume of the sphere is 113 or 36π	2	
The total volume is 396 or 126π	1	
For the new tank the volume $V = \pi r^2 h + 4\pi r^3 / 3 = 10\pi r^2 + 4\pi r^3 / 3 = 2 \times 126\pi$		
$10r^2 + 4r^3/3 = 252$	2	
Tries different values for r		
When $r = 4$, $V = 245.3$		
When $r = 5$, $V = 416.6$		
When $r = 4.1$, $V = 259.9$	2	
Award process points if numerical errors are made.		10
Total Points		10