College and Career Readiness Mathematics

Scoring Rubric
 (Draft)

Short Tasks			
Q	Answer		Points
1	$x=1$ or -4		1
2	$(x=7)$ length 12 cm width 5 cm		1
3	17 or -17		1
4	$2 x-y=0$		1
5	$\frac{8}{14}=\frac{4}{7}$		1
6	$\begin{aligned} & 1.2 .7 \times 104+1.2 \times 102 \\ & =2.712 \times 104 \end{aligned}$		1
7	$\mathrm{a}-\mathrm{b}$		1
8	$x=32$ and $y=8$		1
9	$-\frac{3}{4}$		1
10	Yellow: 43 cm Red: 55 cm Answer: Red		1
Total			10

	Multiplying Cells								Rubric	
	:								Points	Section points
1.	Fills in the table correctly:								2	2
	Time	0	20	40	60	80	100	120		
	Number of cells	1	2	4	8	16	32	64		
2.	Fills in the table correctly:								2	2
	Time	0	20	40	60	80	100	120		
	$\begin{array}{l}\text { Number } \\ \text { of cells as } \\ \text { power of }\end{array}$	2^{0}	2^{1}	2^{2}	2^{3}	2^{4}	2^{5}	2^{6}		
3.									1	
	Gives a correct explanation such as: 3 hours is 9 lots of 20 minutes and the power of 2 equals the number of 20 minutes which have passed.								1	2
4.	Gives a correct answer: 32768 Shows correct work such as: 5 hours $=5 \times 3$ lots of 20-minutes $=15$ lots of 20-minutes 2^{15}								1 1	
5.	Gives a correct answer: $\mathbf{3 4 0}$ minutes or 5 hours 40 minutes Shows correct work such as:$\begin{aligned} & 2^{16}=32768 \times 2=65536 \\ & 2^{17}=65536 \times 2=131072 \\ & 17 \times 20 \end{aligned}$								1 1	2
	Total Points									10

	Sorting Functions				Rubric	
					Points	Section points
1.	Gives correct I Allow 1 point	Equation C D B A wo correct	 Table B A C D	Rule A C D D	6	6
2. (a)	Gives correct explanations such as: Equation C is a quadratic curve that passes through the origin and is symmetrical about the \mathbf{y} axis, so this is Graph A.				1	1
(b)	Equation D is the equation of a straight line, so this is Graph B.				1	1
(c)	Equation B is a quadratic curve that passes through the origin and is symmetrical about the x axis, so this is Graph C .				1	1
(d)	Equation A is an inverse (hyperbolic) function: the graph approaches, but does not cross the axes (the axes are asymptotes) so this is Graph D.				1	1
				Total Points		10

	Charity Fair	Rubric	
		Points	Section points
1.	Gives correct answer: $\frac{\mathbf{1}}{\mathbf{1 6}}$ Shows work such as: probability $($ all red $)=(1 / 4)^{3}=1 / 64$ probability $($ all the same color $)=4 \times(1 / 64)=1 / 16$	1 1	2
2.	Gives correct answer: No and May show that: If 16 people play once, they pay $16 \times 25 \phi=\$ 4$ On average, 1 person wins $\$ 5$ So the charity loses. $\quad(\$ 4-\$ 5=-\$ 1)$ Accept alternative correct reasoning	2 ft	2
3.	Suggests changes such as: Change 1 Have more colors, say 5. Calculates prob(all the same color) $=5 \times(1 / 5)^{3}=1 / 25$ States that if 25 people play once, the charity gains. $(\$ 6.25-\$ 5=\$ 1.25)$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	3
	Change 2 Have more barrels, say 4. $\operatorname{prob}($ all the same color $)=4 \times(1 / 4)^{4}=1 / 64$ If 64 people play, the charity gains. $(\$ 16-\$ 5=\$ 11)$	$\begin{gathered} \text { or } \\ 1 \\ 1 \\ 1 \end{gathered}$	or 3
	Change 3 Increase the price to 50 cents If 16 people play once, the charity gains. $(\$ 8-\$ 5=\$ 3)$ Alternatively, decrease the amount won from, say, $\$ 5$ to $\$ 3$. If 16 people play once, the charity gains. ($\$ 4-\$ 3=\$ 1$)	$\begin{gathered} \text { or } \\ 1 \\ 1 \\ 1 \end{gathered}$	or 3
	Total Points	max	10

Square		Rubric	
		Points	Section points
1 Gives correct answer: 5 Uses the Pythagorean correctly, but incorrect answer. Attempts to use the Pythagorean Rule		3 (2) (1)	3
2 Gives correct answer: -3/4		2	2
3. Gives correct explanation such as: The slope of $\mathrm{DA}=4 / 3=$ slope of CB The slope of $\mathrm{AB}=-3 / 4$ Therefore the sides of the shape are perpendicular The lengths of $A B$ and $A D$ are 5 Therefore the shape is a square. Partial credits For some correct work.		5 (4) to (1)	5
	Total Points		10

Circles and Squares	Rubric	
	Points	Section points
Gives correct answer: The ratio of the areas of the two squares is $1: 2$ Shows correct work such as: Draws construction lines from the center of the circle to the vertices of the small square. If the large square has side of length x, then, using the Pythagorean Theorem gives the length of the sides of the small square are $\sqrt{2} / 2$. The area of the large square is x^{2}.	4	1
The area of the small square is $x^{2} / 2$	1	4
Accept alternative methods.		
Gives correct answer: The ratio of the two areas is $1: 2$		
If a second circle is inscribed in the smaller square, using the Pythagorean Theorem gives the radius of the $s m a l l ~ s q u a r e ~ i s ~$ The area of the large circle is $\pi(x / 2)^{2}=\pi x^{2} / 4$ The area of the small circle is $\pi(\sqrt{ } 2 x / 4)^{2}=\pi 2 x^{2} / 16=\pi x^{2} / 8$ Accept alternative methods.		

	Fun Size Can	Rubric	
		Points	$\begin{array}{\|l} \text { Sectio } \\ \text { n poin } \\ \text { ts } \end{array}$
1.	Gives correct answers: 15.9-16.0 cm and 2.5-2.6 cm. Shows correct work such as: Substitutes in the formula $\mathbf{V}=\pi \mathbf{r}^{\mathbf{2}} \mathbf{h}$ to find the height of the can with radius 2 cm and Substitutes in the formula $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$ to find the height of the can with radius 5 cm . States that the can with radius 2 cm is easy to hold or unstable or tall and thin: the can with radius 5 cm is difficult to hold or drink from or short and fat or equivalent.	2×1 1 1	4
2.	Gives correct answers: $\mathbf{2 2 4 . 9} / \mathbf{2 2 6} .2 / / 72 \pi \mathrm{~cm}^{2} \mathbf{2 3 5 . 6} / \mathbf{2 3 9} / 75 \pi \mathrm{~cm}^{2}$ Uses the formula $S=\mathbf{2} \mathbf{r}^{\mathbf{2}}+\mathbf{2} \boldsymbol{\pi} \mathbf{r h}$ to find the surface areas of cylinders with radii 2 cm and 5 cm .	1 1	2
	Decides to find the surface area of other cylinders. Correctly finds the height and surface area of a cylinders with radii between 2 cm and 5 cm . $\begin{array}{llll} \mathbf{r}=3, & \mathbf{h}=7.1 / 7, & A \approx 190.4 \quad \mathrm{~cm}^{2} & \text { If graph drawn allow } \\ \mathbf{r}=4, & \mathrm{~h}=4.0, & \mathrm{~A} \approx 201.1 \quad \mathrm{~cm}^{2} & \text { point for values plotted. } \end{array}$ States that from these results it appears that the minimum surface area is when the radius is about $\mathbf{3} \mathbf{~ c m}$. Finds surface areas of cylinders with radii around $r=3$. e.g. $\mathbf{r}=\mathbf{2 . 5}, \mathbf{h}=\mathbf{1 0 . 2}, \mathbf{A}=199.5 \mathrm{~cm}^{2} \quad$ Allow a point for each correct area $\mathrm{r}=3.5, \mathrm{~h}=5.2, \quad \mathrm{~A}=191.3 \mathrm{~cm}^{2}$ States that from calculations, or a graph of r / A (or h / A), the minimum surface area has radius $\mathbf{3 c m}$, height 7 cm .	1 1 1 1	4
	Total Points		10

Multiple Solutions		Rubric	
		Points	Section points
1. Gives correct answers: a: ± 11 b: 0,1 c: any values between $\mathbf{0}$ and 1 d: $\mathbf{0 , 1}$ e: any value $\geq \mathbf{- 0 . 3 9 4 7}$ f: any value less than 1 except 0 g : any positive value		7×1	7
2. Gives correct answers with reasons such as: a. $\quad \mathbf{x}^{2}=\mathbf{1 2 1}$ and $\mathbf{x}^{2}=\mathbf{x}$ These are quadratic equations with two roots b. $\quad(x-1)\left(5 x^{4}-7 x^{3}+x\right)=0$ 5 solutions c. Gives two of: $x^{2}<x, 1776 x+1066 \geq 365, x^{2}>x^{3},\|x\|>x$		1 1 1	3
	Total Points		10

\section*{Best Buy Tickets
 | |
| :--- |
| Shows correct reasoning and calculations such as the following: |}

May solve using algebra
Sure Print: The cost for n tickets in dollars is $\mathrm{C}=2 \mathrm{n} / 25$
Best print: $\mathrm{C}=10+\mathrm{n} / 25$
Method 1: May draw graphs and find the point of intersection, $(\mathrm{n}=250)$.
Method 2 (algebraic)
When the two costs are equal $2 \mathrm{n} / 25=10+\mathrm{n} / 25$

$$
\mathrm{n}=250
$$

Shows that when $\mathrm{n}<250$ Sure Print is cheaper
When $\mathrm{n}>250$ Best Print is cheaper
Or May decide to solve arithmetically
Decides to list costs for different numbers of tickets.

Number of tickets	Sure Print	Best Print
50	4	12
100	8	14
150	12	16
200	16	18
250	20	20
300	24	23

States that the lists show that when $\mathrm{n}=250$ the costs are equal
States that when $\mathrm{n}<250$ Sure Print is cheaper
When $\mathrm{n}>250$ Best Print is cheaper

Propane Tanks	Rubric	
	Points	Section points
Gives correct answers and shows correct reasoning such as:		
The approximate value for the radius of the new tank is 4 feet.	1	
For the existing tank The volume of the cylinder is 283 or $\mathbf{9 0} \pi$ The volume of the sphere is 113 or $\mathbf{3 6} \pi$ The total volume is 396 or $\mathbf{1 2 6 \pi}$ For the new tank the volume $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}+4 \pi \mathrm{r}^{3} / 3=10 \pi \mathrm{r}^{2}+4 \pi \mathrm{r}^{3} / 3=2 \times 126 \pi$ $\mathbf{1 0 r}+\mathbf{4 r} / \mathbf{3}=\mathbf{2 5 2}$ Tries different values for r When $\mathrm{r}=4, \mathrm{~V}=245.3$ When $\mathrm{r}=5, \mathrm{~V}=416.6$ When $\mathrm{r}=4.1, \mathrm{~V}=259.9$ Award process points if numerical errors are made.	2	1

