College and Career Readiness Mathematics

Scoring Rubric
 (Draft)

Short Tasks				
Q	Answer	Points		
1	$\sqrt[6]{7}, \sqrt{7}$	1		
2	$x^{4}-4 x^{3}-23 x^{2}+19 x-35$	1		
3	\bullet Graph C \bullet Graphs A and B	1		
4	$\sqrt{3}$	Medians are: A 28 B 36 C 32 Aaron and Claude are equally close to 30. So they are equally good best estimators.		
5	Total			5

	Yogurt	Rubric		
			Points	Section points
1.	Gives correct answer: 15¢ Shows calculation such as: $\frac{20}{100} \times 75$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2
2.	Gives correct answer: $\mathbf{5 0}$ gallons Shows calculation such as: $1600 \times \frac{1}{4} \times \frac{1}{8}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2
3.	Gives correct answer: $\mathbf{2 5 0 0}$ gallons Shows calculation such as: $50 \times 10 \times 5$		$\begin{gathered} 2 \\ 1 \mathrm{ft} \end{gathered}$	3
4.	Gives correct answer: 40\% Partial credit Gives answer :140\% Shows calculation such as: $\frac{2}{5} \times 100$		2 (1) 1 ft	3
		Total Points		10

Hopewell Geometry	Rubric	
	Points	Section points
1. Gives correct answer: 7.1 (accept 7 or $5 \sqrt{2}$) Shows correct work such as: $\left.\sqrt{(} 1^{2}+7^{2}\right)$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	3
2. Gives correct answer: $\mathbf{3 6 . 8}^{\mathbf{o}}$ to $\mathbf{3 6 . 9}{ }^{\circ}$ Shows correct work such as: $\sin ^{-1} \frac{3}{5}$ or $\cos ^{-1} \frac{4}{5}$ or $\tan ^{-1} \frac{3}{4}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2
3. Gives correct answer: Triangle A Gives correct explanation such as: Triangle 1 is an enlargement of Triangle A by a scale factor of 3 .	1	2
4. Gives correct answer: No and Gives a correct explanation such as finds the lengths of all three sides, ($\sqrt{225}, \sqrt{50}, \sqrt{245}$), and shows they don't satisfy the Pythagorean Rule. $245 \neq 225+50$. Accept other methods including: - Uses trigonometry to find the angles (71,6, 81.9, 25.5) - Triangle 3 is isosceles \therefore it has two 45° angles. Triangles 1 and 2 are not isosceles \therefore they do not have 45° angles. Angle in shaded triangle $=180^{\circ}-45^{\circ}-$ non 45° angle $\therefore \neq 90^{\circ}$ Partial credit Gives a partially correct explanation.	3 (1)	3
Total Points		10

\begin{tabular}{|c|c|c|c|}
\hline \& \multicolumn{3}{|l|}{Security Camera Rubric} \\
\hline \& \& Points \& Section points \\
\hline 1. \& \begin{tabular}{l}
Draws a straight line from the security camera \((\mathrm{P})\) to the opposite side of the room as shown. May describe the sight line. \\
This line shows that F and H cannot be seen by the camera at P . Minus 1 for extras.
\end{tabular} \& 1
2 \& 3 \\
\hline 2. \& Correctly, shows/explains the area that cannot be seen by the camera. Three of the twenty squares cannot be seen
\[
3 / 20=15 \%
\] \& 1 \& 3 \\
\hline 3. \& \begin{tabular}{l}
Q can be placed one square left or right of the centre. \\
The area of two of the twenty squares cannot be seen if the camera is placed at Q (or to the side of Q), the centre of the side. \(2 / 20=10 \%\) \\
Partial credit \\
Correctly shows the area that cannot be seen but no calculation.
\end{tabular} \& 1

1
2

(1) \& 4

\hline \& Total points \& \& 10

\hline
\end{tabular}

Sidewalk Stones	Rubric	
	Points	Section points
Gives correct answers and shows correct calculations such as: Number of gray Stones $4 n^{2}+(2 n+1)^{2}=8 n^{2}+4 n+1$ Number of white stones $4 n(2 n+1)=8 n^{2}+4 n$ Calculates pattern number for 841 gray stones $\begin{aligned} & 4 n^{2}+(2 n+1)^{2}=841 \\ & 2 n^{2}+n-210=0 \\ & (2 n+21)(n-10)=0 \\ & \mathbf{n}=\mathbf{1 0} \end{aligned}$ Provides clear explanations Partial credit Provides some explanation Finds the number of white stones $4 \times 10 \times 21=\mathbf{8 4 0}$	3 2 2 2 (1)	10
Total Points		10

Sugar Prices	Rubric	
	Points	Section points
(a). Gives correct answer: D	1	1
(b). Gives correct answer: B	2	
©. Gives correct answer: C and E	2	2
(d). Gives correct answer: A and C	2	
(e). Gives correct answer: C		
Gives correct explanation such as: price \div weight is smallest ratio	2	2

