	Charity Fair	Rubric	
		Points	Section points
1.	Gives correct answer: $\frac{\mathbf{1}}{\mathbf{1 6}}$ Shows work such as: probability $($ all red $)=(1 / 4)^{3}=1 / 64$ probability $($ all the same color $)=4 \times(1 / 64)=1 / 16$	1 1	2
2.	Gives correct answer: No and May show that: If 16 people play once, they pay $16 \times 25 \phi=\$ 4$ On average, 1 person wins $\$ 5$ So the charity loses. $\quad(\$ 4-\$ 5=-\$ 1)$ Accept alternative correct reasoning	2 ft	2
3.	Suggests changes such as: Change 1 Have more colors, say 5. Calculates $\operatorname{prob}($ all the same color $)=5 \times(1 / 5)^{3}=1 / 25$ States that if 25 people play once, the charity gains. $(\$ 6.25-\$ 5=\$ 1.25)$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	3
	Change 2 Have more barrels, say 4. $\operatorname{prob}($ all the same color $)=4 \times(1 / 4)^{4}=1 / 64$ If 64 people play, the charity gains. $(\$ 16-\$ 5=\$ 11)$	$\begin{gathered} \text { or } \\ 1 \\ 1 \\ 1 \end{gathered}$	or 3
	Change 3 Increase the price to 50 cents If 16 people play once, the charity gains. $(\$ 8-\$ 5=\$ 3)$ Alternatively, decrease the amount won from, say, $\$ 5$ to $\$ 3$. If 16 people play once, the charity gains. $(\$ 4-\$ 3=\$ 1)$	$\begin{gathered} \text { or } \\ 1 \\ 1 \\ 1 \end{gathered}$	or 3
	Total Points	max	10

